>

遥控直升机制作,机器人手

- 编辑:澳门新葡萄京官网 -

遥控直升机制作,机器人手

产品简要介绍:

         但假设手指接触或撞击物体,则丝缆会盘曲,使手指塌陷。

operates in more than 100 countries with about 136,000 employees.p;

图片 1

 

 3.6 Wrist/Forearm

is a pioneering technology leader in electrification products, robotics and

图片 2

  该产品应用精密行星滚柱丝杆传动技能,内置无刷伺服电机,适用于具备低、中、高端质量须要的活动调控体系。该产品将放手无刷伺服电机与滚柱丝杆传动结构难解难分,伺服电机转子的团团转运动一贯通过滚柱丝杠机构转化为推杆的直线运动。该产品可依附顾客的急需开展天性化定征服务。

         柔性轴保持比较短以减少颠簸,

And the world’ssteepest funicular railway recently went into operation in Stoos in the SwissAlps, a 1.7-kilometer route whose two 136-passenger cable cars are powered byhigh-efficiency electric motors designed and built by ABB. The company alsosupplied other key components for the system.

图片 3

5、安装灵活,易拆卸维修;

from 

motion, industrial automation and power grids, serving customers in utilities,

In my design, the swashplate is fixed on the main shaft. This is simply done by applying some glue between the aluminum ball and the shaft在自个儿的规划,斜盘式,那是多少个稳固在主井。(wWw.NIUbB.nET)那根本是做了一些胶水的施用之间的铝球和轴

基本型号

Model

行程

Range

导程

Extent

最大载荷

Load

重量

Weight

HB IES-130

0-200mm

3mm/5mm/7.5mm

70KN

19KG

HB IES-100

0-200mm

3mm/5mm

16KN

11KG

HB IES-80

0-200mm

3mm/5mm

9KN

6.5KG

3.2

In the case ofthe world-famous Jungfrau Railway, a 9-kilometer cog railway that beganoperation in 1912, ABB was responsible for the electrification that made theroute possible. Today, ABB technologies still ensure that the Jungfrau Railwaysafely carries more than a million passengers a year – even during heavysnowfalls – to the Jungfraujoch, which at 3,454 meters above sea level isEurope’s highest train station.

图片 4

  The product uses precision planetary roller screw drive technology, built-in brushless servo motor,applicable to a low,medium and high-level performance motion control system. The product will be built integrated brushless servo motor and ball screw drive structure, servo motor rotor rotary motion into linear motion directly by putting a ball screw mechanism. The product can be customized according to customer demand for personalized service.

         中指段,

ABB(ABBN: SIX Swiss Ex)

helicopters are very clean and give out no terrible noise at all. In one nightfall, I visited a web site, which is about how to make a hand made RC helicopter. I was totally impressed and started

1、质量杰出,寿命长,维护费用低; 2、负载大,刚性好;

3.3抓握手指

Making therecord-breaking new cableway feasible for the operator, Bayerische ZugspitzbahnBergbahn AG, is an array of innovative technology from ABB, which has extensiveexperience solving transportation challenges in the Alps.

图片 5

主机总体品质参数 OVERALL TECHNICAL DATA

译文

The systemreplaces the 50-year-old Eibsee cableway and will help overcome the Eibsee’snotoriously long waiting times by transporting nearly three times the number ofpassengers per hour.

遥控直接升学机制作 Mini电动遥控飞机制作图

 

The thumb is key to obtaining many of thegrasps required for interfacing with EVA tools. The thumb shown in The palmmechanism (figure 8) provides a mount for the two grasping fingers and acupping motion that enhances stability for tool grasps. This allows the hand tograsp an object in a manner that aligns the tool's axis with the forearm rollaxis. This is essential for the use of many common tools, like screwdrivers.The mechanism includes two pivoting metacarpals, a common shaft, and twotorsion springs. The grasping fingers and their leadscrew assemblies mount intothe metacarpals. The metacarpals are attached to the palm on a common shaft.The first torsion spring is placed between the two metacarpals providing a pivotingforce between the two. The second torsion spring is placed between the secondmetacarpal and the palm, forcing both of the metacarpals back against the palm.The actuating leadscrew assembly mounts into the palm and the short cableattaches to the cable termination on the first metacarpal. The torsion springsare sized such that as the leadscrew assembly pulls down the first metacarpal, thesecond metacarpal folows a troughly half the angle of the first. In this waythe palm is able to cup in a way similar to that of the human hand without thefingers colliding.

125-year history of innovation, ABB today is writing the future of industrial

The back of the swashplate背面包车型地铁斜盘式

3、发热量小,速度调整精度高; 4、结构紧密,外形好看,应用范围广;

前臂的尾部直径为4英寸,长约8英寸,可容纳全体14个电机,10个独立电路板以及全部手部布线。

The demandsposed by the Bayerische Zugspitzbahn for trouble-free operation andavailability were particularly challenging, requiring a system capable ofoperating 365 days a year, regardless of wind and weather. In such a setting,safe and comfortable transport through the air depends on the perfect interplayof motors, drives and mechanics.

Making the Swashplate Swashplate is the most sophisticated part of a RC helicopter. It seems to be a simple unit of a factory one. However, it is a whole new thing of making one by yourself. Here is my design based on my own little knowledge about the swashplate. What you need includes:斜盘式是最初进的一个组成都部队分钢混直接升学机。那不啻是一个简便的单位,一家工厂之一。不过,那是多个安然无事的新东西,使一所本人。这里是自身设计的根基上笔者自个儿的学问甚少,有关斜盘式。您所须求的牢笼:

产品特色:

Robonaut’s hands set it apart from any previous space manipulator system. These hands can fit into all the same places currently designed for an astronaut’s gloved hand. A key feature of the hand is its palm degree of freedom that allows Robonaut to cup a tool and line up its long axis with the roll degree of freedom of the forearm, thereby, permitting tool use in tight spaces with minimum arm motion. Each hand assembly shown in figure 3 has a total of 14 DOFs, and consists of a forearm, a two DOF wrist, and a twelve DOF hand complete with position, velocity, and force sensors. The forearm, which measures four inches in diameter at its base and is approximately eight inches long, houses all fourteen motors, the motor control and power electronics, and all of the wiring for the hand. An exploded view of this assembly is given in figure 4. Joint travel for the wrist pitch and yaw is designed to meet or exceed that of a human hand in a pressurized glove. Page 2 Figure 4: Forearm Assembly The requirements for interacting with planned space station EVA crew interfaces and tools provided the starting point for the Robonaut Hand design [1]. Both power and dexterous grasps are required for manipulating EVA crew tools. Certain tools require single or multiple finger actuation while being firmly grasped. A maximum force of 20 lbs and torque of 30 in-lbs are required to remove and install EVA orbital replaceable units (ORUs) [2]. The hand itself consists of two sections (figure 5) : a dexterous work set used for manipulation, and a grasping set which allows the hand to maintain a stable grasp while manipulating or actuating a given object. This is an essential feature for tool use [3]. The dexterous set consists of two 3 DOF fingers (index and middle) and a 3 DOF opposable thumb. The grasping set consists of two, single DOF fingers (ring and pinkie) and a palm DOF. All of the fingers are shock mounted into the palm. In order to match the size of an astronaut’s gloved hand, the motors are mounted outside the hand, and mechanical power is transmitted through a flexible drive train. Past hand designs [4,5] have used tendon drives which utilize complex pulley systems or sheathes, both of which pose serious wear and reliability problems when used in the EVA space environment. To avoid the problems associated with tendons, the hand uses flex shafts to transmit power from the motors in the forearm to the fingers. The rotary motion of the flex shafts is converted to linear motion in the hand using small modular leadscrew assemblies. The result is a compact yet rugged drive train. Figure 5: Hand Anatomy Overall the hand is equipped with forty-two sensors (not including tactile sensing). Each joint is equipped with embedded absolute position sensors and each motor is equipped with incremental encoders. Each of the leadscrew assemblies as well as the wrist ball joint links are instrumented as load cells to provide force feedback. In addition to providing standard impedance control, hand force control algorithms take advantage of the non-backdriveable finger drive train to minimize motor power requirements once a desired grasp force is achieved. Hand primitives in the form of pre-planned trajectories are available to minimize operator workload when performing repeated tasks.

Since the late19thcentury, ABB has built a lasting reputation for safe, reliableand energy-efficient transportation in the alpine region.

The plan of the helicopter had finally been completed. It is not very well drew. The current plan available is only for the fixed pitch design. Please click the above photo for the plan. 该安插的直接升学机终于产生。[wWW.nIubb.net)那不是很好的报名。依据当前的布署,可仅适用于固定摊点的规划。请按上述照片的布署。 Length 410mm Height 150mm Flying Weight 250g (include 700mAh battery pack) Control system Hiller control system / fixed pitch Main rotor diameter 490mm Tail rotor span 146mm Transmission rate 1:18 (main rotor) 1:3.5 (tail rotor) Power speed 300 motor (main rotor) tail boom 280mm receiver GWS 宝马7系4P ( 4 channel, 3.8g ) ESC Jeti 05 ( main rotor, 5A, 9g ) JMP-7 ( tail rotor, 4A, 0.7g ) Gyro GWS-PG-03 ( 7g with case ) servo Hitec HS-50 * 2 ( 0.09sec/60° , 0.6kg/cm, 5.8g ) Battery Sanyo 700mAh * 7

Figure12:ExamplesoftheRobonaut Hand

ABB’s alpine

遥控直接升学机制作 Mini电动遥控飞机制作图

过去的手工业设计[4,5]动用了使用复杂滑轮系统或护套的腱索驱动装置,那三种装置在EVA空间境况中应用时都会招致深重的磨损和可信赖性难题。为了防止与肌腱有关的题材,手使用柔性轴将电力以前臂的电机传输到手指。使用Mini模块化导螺杆组件将柔性轴的旋转运动调换为手中的直线运动。结果是叁个一环扣一环而固若金汤的传动系。

Pulling thegondolas such a long distance at steeps gradients of as much as 104 percent(about 46°) and a speed of 10.6 meter per second requires significant power,which is supplied by two 800-KW three-phase AC motors from ABB that are housedin the cableway’s Valley Station.

遥控直接升学机制作 Mini电动遥控飞机制作图

using dexterousgraspsforfinetoolmaipulationTofacilitatetestingofthehandbaselevelpadsasshown infigures11,12werefabricatedfromDow Cornings Silastic®E. Thepadsprovideanonslipcompliant surfacenecessary forpositivelygraspinganobject.Thesepadswillserveasthefoundationfortactilesensorsandbe coveredwithaprotectiveglove.Futureplansincludethedevelopment of agraspcriteriameasureforthestabilityofthehandgrasp.Thesecriteriawillbeusedtoassisttheoperatorindeterminingif agrasp isacceptable.Sincethebaselineoperationplandoesnot involveforcefeedbacktotheoperator,visualfeedback onlymaybeinsufficient toproperlydetermineif agraspisstable.Usingsomeknowledgeof theobjectwhichisbeinggraspedinconjunctionwiththeexistingleadscrew forcesensorsandasmallsetofadditional tactilesensors installedonthefingersandpalm,thecontrolsystemwilldeterminetheacceptabilityof thegraspandindicatethat measuretotheoperator.Theoperatorcanthendecide howbestousethisdatainreconfiguringthegrasptoa morestableconfiguration.Thisgraspcriteriameasurecouldevolveintoanimportantpartof anautonomous graspingsystem. 6 Conclusions TheRobonaut Hand is presented. This highly anthropomorphic human scale hand builtat the NASA Johnson Space Center is designed to interface with EVA crewinterfaces thereby increasing the number of robotically compatible operationsavailable to the International Space Station. Several novel mechanisms aredescribed that allow the Robonaut hand to achieve capabilities approaching thatof an astronaut wearing a pressurized space suited glove. The initial jointbased control strategy is discussed and example tool manipulations areillustrated. References 1. Lovchik, C. S., Difiler, M. A., Compact DexterousRobotic Hand. Patent Pending. 2. Salisbury, J. K., & Mason, M. T., RobotHands and the Mechanics of Manipulation. MIT Press, Cambridge, MA, 1985. 3.Jacobsen, S., et al., Design of the Utah/M.I.T. Dextrous Hand. Proceedings ofthe IEEE International Conference on Robotics and Automation, San Francisco, CA,1520-1532, 1986. 4. Bekey, G., Tomovic, R., Zeljkovic, I., Control Architecturefor the Belgrade/USC Hand. Dexterous Robot Hands, 136-149, Springer-Verlag, NewYork, 1990. 5. Maeda, Y., Susumu, T., Fujikawa, A., Development of anAnthropomorphic Hand (Mark-l). Proceedings of the 20 th International Symposiumon Industrial Robots, Tokyo, Japan, 53-544, 1989.

Company’sstate-of-the-art motors and drives ensure safety and reliability onrecord-setting gondola system for Germany’s highest mountain

Make sure that the aluminum ball placed in the rod end can be moved freely. 2 holes were drilled on the plastic spacer in order to house two screws that used to hold the ball linkage. 作出料定的是,铝球,放置在杆端关节轴承可以提议自由。二洞钻于塑料像胶间隔,以便向内务五个螺丝用来进行球的维系。

 图6:解耦链接

legacy

designing my own helicopter. Here is my helicopter: 小秘籍是有关创立你自个儿的钢混直接升学机 飞行香港区域市政局的直接升学机,实在是老大让人振作激昂的。(WWw.nIUBB.NET]她们的神通广大给出了钢混试验一个整机的获得八个三个维度空间,在这样一种格局未有别的机器能够!我有发布的钢混直接升学机以上的一年,但照样以为本身刚才已经学到了部分手艺,它可以施行。 有一般七个小型直接升学机,在钢混商场。作者已计划购买里面一个人,因为她们得以乘飞机内的客厅,以致起飞,对大家的手。不像那多少个经营的气体,那一个活动直接升学机,是很通透到底,并给予提议并未可怕的噪声在全数。在一入夜,笔者访问了一个网址,那是关于怎么着创造手工业钢混直接升学机。作者是一心的印象,并开头安排协和的直升机。这里是自家的直接升学机

罗布onaut的手把它与原先的太空垄断(monopoly)器系统区分开来。这个双手能够装入近期为宇宙航银行人士的戴手套而安顿的具备同一的地方。手的一个至关心器重要个性是它的手掌自由度,使得罗布onaut可以用三个工具和长轴与前臂的自由度举办排列,进而允许工具在窄小的空中中以细小的臂膀运动应用。

twin-motor design

Making the Swashplate

手指关节调节是由此用于偏航关节的对立丝缆对和用于俯仰关节的预加载弹簧实现的。最早,通过球形连杆连接受灵巧指状物的前部的单个压缩弹簧在全开地点向基部关节施加不足的力矩。连接到手指背部的双杜震宇弹簧革新了越多关节范围的预加载。可是,在一丝一毫张开地方期望的预加载在闭馆时期变成较高的力。正在打开确立最棒预加载和使预加载力在任何范围内线性化的做事。指状丝缆提议了教条安装和数学挑衅。灵巧的手指头使用单个安装螺丝将丝缆固定到位,同一时候幸免丝缆夹紧。这种布局允许丝缆在指尖运动时期屈曲并发出合理定位的杠杆臂。不过,在评估不相同的丝缆直径时,使用单个螺钉实行组装很拮据。拇指使用更安全的锁,当中满含一块带有杰出部分的平板,该平板可稳定地按压其通道中的丝缆。那三种技巧之间的交易正在持续。类似的丝缆连接装置也在为其余手指关节衍生和变化。丝缆的一帆风顺使密闭式运动学变得紧Baba。手指运动时设置点处的丝缆屈曲不易正确建立模型。任何封闭模型都亟需简化有关丝缆弯曲和与手指凸轮接触的比方。捕获全数有关数据的更简便易行的减轻方案选拔凭经验在线离线获取的多维数据图。具备丰富高的分辨率,这么些地图提供正确的正向和反向运动学数据。

This pressrelease features multimedia. View the full release here:http://www.businesswire.com/news/home/20171221005676/en/

图片 6

3.5

ZURICH --(BUSINESS WIRE) --

* 1 ball bearing * 1 plastic spacer * rod end set ( for holding of the aluminum ball in the swashplate ) * aluminum ball ( from ball linkage set 3*5.8 ) * aluminum ring * epoxy adhesive 两个球轴承 一塑胶间隔 棒年终确立(持有的铝球,在斜盘式) 铝球(从球的调换,设置3 * 5.8 ) 铝环 环氧胶粘剂 The rod end set has first been cut into a round shape. It is then inserted into the plastic spacer as shown below: 该杆端设置首先被审核消减为八个圆形。[wwW.nIUBb.nET)那是接下来插入到塑料间隔,如下所示:

Finger Drive Train

“Today, it isall about making advancements in terms of energy efficiency,” says UeliSpinner, Head of Sales, Key Accounts & Service ABB AG, Switzerland. “Butalso where support, maintenance and service are concerned, we are the preferredpartners of cableway operators.’’

in the RC market. I have already planned to buy one of them as they can fly inside the living room and even take off on ours hand. Unlike those operated by gas, these electric

The requirements for interacting withplanned space station EVA crew interfaces and tools provided the starting pointfor the Robonaut Hand design [1]. Both power (enveloping) and dexterous grasps(finger tip) are required for manipulating EVA crew tools. Certain toolsrequire single or multiple finger actuation while being firmly grasped. Amaximum force of 20 lbs. and torque of 30 in-lbs are required to remove andinstall EVA orbital replaceable units (ORUs) [15]. All EVA tools and ORUs mustbe retained in the event of a power loss. It is possible to either buildinterfaces that will be both robotically and EVA compatible or build a seriesof robot tools to interact with EVA crew interfaces and tools. However, bothapproaches are extremely costly and will of course add to a set of spacestation tools and interfaces that are already planned to be quite extensive.The Robonaut design will make all EVA crew interfaces and tools roboticallycompatible by making the robot's hand EVA compatible. EVA compatibility isdesigned into the hand by reproducing, as closely.as possible, the size,kinematics, and strength of the space suited astronaut hand and wrist. Thenumber of fingers and the joint travel reproduce the workspace for apressurized suit glove. The Robonaut Hand reproduces many of the necessarygrasps needed for interacting with EVA interfaces. Staying within this sizeenvelope guarantees that the Robonaut Hand will be able to fit into all therequired places. Joint travel for the wrist pitch and yaw is designed to meetor exceed the human hand in a pressurized glove. The hand and wrist parts are  sizedto reproduce the necessary strength to meet maximum EVA crew requirements.Figure1: Robonaut Hand Control system design for a dexterous robot handmanipulating a variety of tools has unique problems. The majority of theliterature available, summarized in [2,16], pertains to dexterous manipulation.This literature concentrates on using three dexterous fingers to obtain forceclosure and manipulate an object using only fingertip contact. While useful,this type of manipulation does not lend itself to tool use. Most EVA tools arebest used in an enveloping grasp. Two enveloping grasp types, tool and power,must be supported by the tool-using hand in addition to the dexterous grasp.Although literature is available on enveloping grasps [17], it is not asadvanced as the dexterous literature. The main complication involvesdetermining and controlling the forces at the many contact areas involved in anenveloping grasp. While work continues on automating enveloping grasps, a tele-operationcontrol strategy has been adopted for the Robonaut hand. This method ofoperation was proven with the NASA DART/FITT system [18]. The DART/FITT systemutilizes Cyber glove® virtual reality gloves, worn by the operator, to controlStanford/YPL hands to successfully perform space relevant tasks. 2.1 SpaceCompatibility EVA space compatibility separates the Robonaut Hand from manyothers. All component materials meetoutgassing restrictions to prevent contamination that couldinterfere with other space systems. Parts made of different materials aretoleranced to perform acceptably under the extreme temperature variationsexperienced in EVA conditions. Brushless motors are used to ensure long life ina vacuum. All parts are designed to use proven space lubricants.

industry and transport & infrastructure globally. Continuing a more than

Mini电动遥控直接升学机制作 以下小说是经过google翻译所得: Little tips about building your own RC helicopter Flying RC helicopter is really very exhilarating. Their versatility gives a RC pilot a complete access to the three-dimensional space in such a way that no other machines can! I have played RC helicopter for more than one year but still find that I have just learnt a few tricks that it can perform. There are generally two micro-helicopters

25度)和俯仰(I00度)。那些活动由八个以分化方法职业的导螺杆组件提供。从螺杆组件延伸的短丝缆连接到近端指状部分半壳中的凸轮槽中(图5)。使用丝缆化解了拍卖三个自由度尾部接头所需的汪洋驾驭。凸轮槽用于调控连接丝缆从导螺杆组件的波折半径(保持十分大以幸免对丝缆施压并同意利用过大的丝缆)。凹槽还允许在总体手指运动范围内维持差非常的少恒定的杠杆臂。由于总是丝缆保持相当短(差不离1英寸)并且其屈曲半径受到调节(允许丝缆的直径相对异常的大(0.07英寸)),由此丝缆在办事方向上像硬棒一样起效果(接近手掌)和像相反方向的弹簧同样。换句话说,丝缆长度与其直径的比例使得

digitalization and driving the Energy and Fourth Industrial Revolutions. ABB

图片 7

 设计花招(图9)提供了Infiniti制的经过,以最大化手指柔性轴的曲折半径,同不经常间类似加压宇宙航行员手套的花招节距和偏航行程。总行程为 /- 70度的俯仰和 /- 30度的偏航。这两条轴线互相交叉,并与前臂滚动轴的大旨线相交。当与罗布onaut Arm [19]接连时,那八个轴线结合在花招袖口的主导,爆发飞跃的运动学设计方案。袖套通过减震器安装在前臂上,以追加安全性。

“InSwitzerland, most cableways and chairlifts use ABB motors and drives,’’ saysHans-Georg Krabbe, Chairman of the Board of ABB AG, Germany. “We are absolutelydelighted to contribute to such a unique project in Germany, too.’’

遥控直接升学机制作 Mini电动遥控飞机创制图 2019-01-11 09:19 比物连类:资源消息 阅读()

         解耦连杆组件,

The cablewaybreaks three world records for a pendular, or hanging, cable car system: at 127meters, its steel column is the tallest, with 1,950 meters it overcomes thehighest elevation difference and with a total run of 3,213 meters from basestation to peak, it has the longest span.

图片 8

展望国际空间站(ISS)上的车外活动(EVA)要求相当可观。那么些维护和建设活动是昂贵且危急的。宇航员必得在可能离开空间站的争持安全从前实行科学普及的备选,富含预先呼吸太空服空气压力长达4钟头。一旦在户外,机组人士必需极度敬业,防止守损坏宇宙航行服。United States国家航空航天局约翰逊航天宗旨的机器人系统手艺处近些日子正在开拓机器人系统,以缩减空间站人士的EVA担任,并且服务于快速反应技艺。二个如此的系统,罗布onaut正在布置和建筑,以便与唯有人机分界面包车型大巴表面空间站系统接口。为此,罗布onaut手[1]提供了莫大的举例灵巧性,以保障与广大这么些接口的包容性。在过去的二十年中,已经支付出过多破纪录的利落机器人手[2-7]。这几个设施使得机器人垄断(monopoly)器可以引发和决定未被规划为机器人的物体包容。纵然有多少个夹具[8-12]设计用来空间应用,有个别乃至在太空中打开了测验[8,9,11],但绝非灵巧的机器人手在EVA条件下飞行。 罗布onaut手是空间EVA使用中正在开荒的五只手之一[13,14],它的尺寸和力量最周围适合宇宙航银行人员的手。

Powerful

手部配备了四十三个传感器(不包蕴触觉感测)。// 每种难点都配有嵌入式相对地方传感器,// 每种电机都配有增量式编码器。// 每一种导螺杆组件以及手段球关节连杆均被武装为应力传感器以提供力反馈。

Long queueswaiting to ascend Germany’s tallest mountain may now be history. And that isnot the only thing historical about the new ABB-powered cable car system thatopened today and can take as many as 580 passengers an hour to the Zugspitze,the Bavarian Alps peak that is Germany’s highest.

3.1指尖传动系统

SeveralexampletoolmanipulationsusingtheRobonauthand underteleoperatedcontrolareshowninfigures11and12. Figure11:ExamplesoftheRobonaut Handusingenvelopingpowergraspstoholdtools An importantsafetyfeatureof thehand,itsabilityto passivelycloseinresponsetoacontactonthebackof thefingers,causesproblemsfor closedloopjoint controlduringnormaloperation.Furtherrefinementof the kinematiccalibrationandthestraingaugeforcesensorsirequiredtoreliablydeterminewhenthefingersarebeing uncontrollablycosed.Oncethisinformation, alongwithabettermodelforthedrivetraindynamicsisavailable,thejointcontrollercanbemodifiedtodistinguishteloaded fromthenormaloperatingmode.Althoughconsiderableworkstillneedstobedone,joint controlsatisfactoryforteleoperatedcontrolof thehand hasbeenattained. For initial tests,the handwascontrolledin joint modefrominputsderivedfromtheCyberglove®wornbytheoperator.TheCybergloveuses bendsensors,whichareinterpretedbytheCyberglove electronicstodeterminethepositionof 18actionsof theoperator'shand. Someof theseactionsareabsolute positionsoffingerjointswhileotherarerelativemotions betweenjoints.Thechallengeisdevelopingamapping betweenthe 18 absoluteandrelativejointpositions determinedby theCybergloveandthe12jointsof the Robonaut hand. Thismapping must result in the Robonaut hand tracking the operator's hand as well aspossible. While some joints are directly mapped, others required heuristic algorithmsto fuse data from several glove sensors to produce a hand joint position command.In conjunction with an auto mated glove calibration program, a satisfactory mappingis experimentally obtainable.

 2.1空间包容性EVA空间包容性将罗布onaut手与别的过五人分手。全数组件材料均满足除气限制,以幸免恐怕苦恼别的空间体系的污染。区别材质制作而成的机件在EVA条件下经受极端温度变化时持有可承受的天性。无刷电机用于确认保障真空中的长寿命。全体零件都设计为运用经过认证的半空中润滑剂。

手部组件手部本人分为两部分。叁个用于操作的灵敏职业组(食指和中指),以及多个抓握组(佚名指和小指),它同意手在操作或运行给定时保持安静的抓握目标。那是工具使用的基本特征[13]。

图1:罗布onaut手控系统设计灵巧的机械人手垄断各个工具具有特种的难点。在[2,16]中总计的许多文献都关乎到灵巧的决定。那个文献聚集于接纳多少个灵巧手指来博取力闭合併仅使用手指接触来调节物体。即便有用,但那系列型的操作不适用于工具使用。大许多EVA工具最适合用来包围式抓握。除了灵巧的抓握之外,还必需利用工具用手来帮衬三种包络抓握类型,工具和力量。就算文献可用来包络抓握[17],但它并不像灵巧手那样先进。首要的目眩神摇包含分明和操纵关系包络抓握的多多触及区域的力。尽管自动化包络抓握的工作仍在后续,但罗布onaut手已选拔远程操作调控计策。美利哥国家航空航天局DART / 福克斯T系统验证了这种操作方法[18]。 DART / 卡罗拉T系统使用由操作员佩戴的Cyber​​glove®虚构现实手套来决定斯坦ford / YPL手以打响施行空间相关职分。

Initial Finger Control Design and Test

 Figure 6: Decoupling link The second and thirdjoints of the dexterous fingers are directly linked so that they close withequal angles. These joints are driven by a separate leadscrew assembly througha decoupling linkage (figure 6). The short cable on the leadscrew assembly isattached to the pivoting cable termination in the decoupling link. The flex inthe cable allows the actuation to pass across the two degree of freedom basejoint, without the need for complex mechanisms. The linkage is designed so thatthe arc length of the cable is nearly constant regardless of the position ofthe base joint (compare arc A to arc B in figure 6). This makes the motion ofdistal joints approximately independent of the base joint. figure 2 has aproximal and distal segment and is similar in design to the dexterous fingersbut has significantly more yaw travel and a hyper extended pitch. The thumb isalso mounted to the palm at such an angle that the increase in range of motionresults in a reasonable emulation of human thumb motion. This type of mountingenables the hand to perform grasps that are not possible with the common practiceof mounting the thumb directly opposed to the fingers [2,3,14]. The thumb basejoint has 70 degrees of yaw and 110 degrees of pitch. The distal joint has 80degrees of pitch. Linkages Finger Mount Figure 7:Grasping Finger The actuationof the base joint is the same as the dexterous fingers with the exception thatcammed detents have been added to keep the bend radius of the cable large atthe extreme yaw angles. The distal segment of the thumb is driven through adecoupling linkage in a manner similar to that of the manipulating fingers. Theextended yaw travel of the thumb base makes complete distal mechanicaldecoupling difficult. Instead the joints are decoupled in software.

As might be expected, many integrationchallenges arose during hand prototyping, assembly and initial testing. Some ofthe issues and current resolutions follow. Many of the parts in the hand useextremely complex geometry to minimize the part count and reduce the size ofthe hand. Fabrication of these parts was made possible by casting them inaluminum directly from stereo lithography models. This process yieldsrelatively high accuracy parts at a minimal cost. The best example of this isthe palm, which has a complex shape, and over 50 holes in it, few of which areorthogonal to each other. Finger joint control is achieved through antagonisticcable pairs for the yaw joints and pre-load springs for the pitch joints.Initially, single compression springs connected through ball links to the frontof the dexterous fingers applied insufficient moment to the base joints at thefull open position. Double tension springs connected to the backs of thefingers improved pre-loading over more of the joint range. However, desiredpre-loading in the fully open position resulted in high forces during closing.Work on establishing the optimal pre-load and making the preload forces linearover the full range is under way. The finger cables have presented bothmechanical mounting and mathematical challenges. The dexterous fingers usesingle mounting screws to hold the cables in place while avoiding cable pinch.This configuration allows the cables to flex during finger motion and yields areasonably constant lever arm. However assembly with a single screw isdifficult especially when evaluating different cable diameters. The thumb usesa more secure lock that includes a plate with a protrusion that securely pressesdown on the cable in its channel. The trade between these two techniques iscontinuing. Similar cable attachment devices are also evolving for the otherfinger joints. The cable flexibility makes closed form kinematics difficult.The bend of the cable at the mounting points as the finger moves is not easy tomodel accurately. Any closed form model requires simplifying assumptionsregarding cable bending and moving contact with the finger cams. A simplersolution that captures all the relevant data employs multi-dimensional datamaps that are empirically obtained off-line. With a sufficiently highresolution these maps provide accurate forward and inverse kinematics data. Thewrist design (figure 9) evolved from a complex multibar mechanism to a simplertwo-dimensional slider crank hook joint. Initially curved ball links connectedthe sliders to the palm with cams that rotated the links to avoid the wristcuff during pitch motion. After wrist cuff and palm redesign, the presentstraight ball links were achieved. The finger leadscrews are non-back drivableand in an enveloping grasp ensure positive capture in the event of a powerfailure. If power can not be restored in a timely fashion, it may be necessaryfor the other Robonaut hand [19] or for an EVA crew person to manually open thehand. An early hand design incorporated a simple back out ring that throughfriction wheels engaged each finger drive train and slowly opened each fingerjoint. While this works well in the event of a power failure, experiments withthe coreless brushless DC motors revealed a problem when a motor fails due tooverheating. The motor winding insulation heats up, expands and seizes themotor, preventing back-driving. A new contingency technique for opening thehand that will accommodate both motor seizing and power loss is beinginvestigated.

         丝缆充足坚硬以将手指推开,

 普通轴手掌铸造花招通过三个线性试行器以不一致措施驱动(图9)。线性施行器由四个滑块和三个蕴含贰个整机滚珠丝杠的定制空心轴无刷直流动机组成。推行器通过设置在事先加载的球座中的球节连杆连接到手心。图8:手掌机制手指互相以细小的角度安装在手心上,那与将手指安装在相互平行的形似做法反而。•这种设置使手指能够像人手同样接近在一道。为了进一步升高手的可信性和牢固性,全体手指都设置在减震垫上。那使他们能够在不引起损坏的图景下收受相当高的震慑。

各类手部组件总共具有16个自由度,何况由前臂,八个DOF腕部以及具备地点,速度和力传感器的12个DOF手组成。

�r2�Ί�

         三个规划作为伊哈洛传感器的外壳,支撑轴承,

过去的手工业设计[4,5]利用了利用复杂滑轮系统或护套的腱索驱动装置,这三种装置在EVA空间境遇中运用时都会导致严重的破坏和可信性难点。为了幸免与肌腱有关的标题,手使用柔性轴将电力以前臂的电机传输到手指。使用Mini模块化导螺杆组件将柔性轴的旋转运动调换为手中的直线运动。结果是二个严密而安如五台山的传动系。

前臂的最底层直径为4英寸,长约8英寸,容纳全体十四台电机,

         三个含有与外壳合作的导轨的螺母(为了免除轴负载)以及连接到螺母上的短丝缆长度。     刘宇传感器安装在图3所示的壳体的平面上。将丝杠组件的最上部夹紧在手心中,以允许壳体在负载下张开或降低,进而一贯读取成效于手指。


享有EVA工具和ORU必需在发生断电时保留。能够创设兼容机器人和EVA的接口,只怕营造一名目许多机器人工具来与EVA机组接口和工具举办相互。不过,那三种方法都以十二分昂贵的,而且当然会扩展一套空间站工具和接口,那个工具和接口已经安顿得一定常见。 罗布onaut设计将使机器人的手EVA包容,进而使具有EVA机组人机分界面和工具机器人兼容。通过尽恐怕地再现适合宇宙航银行职员手和花招的空中的尺码,运动学和强度,将EVA包容性设计在手中。手指和一同行程的数码再次出现了加压套装手套的专门的学业空间。 罗布onaut手掌再次出现了与EVA分界面交互所需的大队人马必得手腕。保持在那个尺寸范围内保证罗布onaut手将能够适应全体必要的地点。手腕节距和偏航的二头行程被规划为在加压手套中达成或超过人口。手部和腕部的尺码能够复出须求的强度,以满意最大的EVA机组人士的渴求。

早先时代的手部设计组合了三个简单的退出环,通过摩擦轮啮合各个手指传动系,并暂缓张开种种手指关节。固然这种情形在发出电源故障时运维突出,但无芯无刷直流动机的实验公布了当电机由于过热而发生故障时的难点。电机绕组绝缘加热,增加并占用电机,防止反向驱动。正在研讨一种新的应急技术,用于打开将容纳马拉合尔死和功率损失的手。

3.5手掌

         组件的较早型号还包罗切入导螺杆的全体式反射编码器。这种布局运转出色,但后来从手中删除,以尽量减弱手中的接线。

The requirements for extra-vehicularactivity (EVA) onboard the International Space Station (ISS) are expected to beconsiderable. These maintenance and construction activities are expensive andhazardous. Astronauts must prepare extensively before they may leave therelative safety of the space station, including pre-breathing at space suit airpressure for up to 4 hours. Once outside, the crew person must be extremelycautious to prevent damage to the suit. The Robotic Systems Technology Branchat the NASA Johnson Space Center is currently developing robot systems toreduce the EVA burden on space station crew and also to serve in a rapidresponse capacity. One such system, Robonaut is being designed and built tointerface with external space station systems that only have human interfaces.To this end, the Robonaut hand [1] provides a high degree of anthropomorphicdexterity ensuring a compatibility with many of these interfaces. Many groundbreaking dexterous robot hands [2-7] have been developed over the past twodecades. These devices make it possible for a robot manipulator to grasp andmanipulate objects that are not designed to be robotically M. A. DiftlerAutomation and Robotics Department Lockheed Martin Houston, Texas 77058 diftler@jsc.nasa.gov Fax: 281-244-5534 compatible. While several grippers [8-12] havebeen designed for space use and some even tested in space [8,9,11], nodexterous robotic hand has been flown in EVA conditions. The Robonaut Hand isone of several hands [13,14] under development for space EVA use and is closestin size and capability to a suited astronaut's hand.

         并经过由聚四氟四十烷覆盖的说话弹簧组成的护套实行维护。

图10:前臂前臂配置为带四个盖板的肋状外壳。将有所要求的设施包装在EVA前臂尺寸体量中是一项具有挑衅性的任务。两个盖板以种种角度倾斜,何况应用键控安装接片来使前臂表面面积最小化。腕部直线实践器安装在七个盖板上,对称地稳固在前臂上以保障连忙的移位。其余八个盖板为五个手指头马达组提供支架(图10)。这里不须求对称,因为柔性轴轻易盘曲以适应古怪的角度。盖板也筹算用作散热器。随着电机,定制混合电机驱动器微电路安装在盖板上。

 COMMON SHAFT PALM CASTING The wrist isactuated in a differential manner through two linear actuators (figure 9). Thelinear actuators consist of a slider riding in recirculating ball tracks and acustom, hollow shaft brushless DC motor with an integral ballscrew. Theactuators attach to the palm through ball joint links, which are mounted in thepre-loaded ball sockets. Figure 8: Palm mechanism The fingers are mounted tothe palm at slight angles to each other as opposed to the common practice ofmounting them parallel to each other• This mounting allows the fingers to closetogether similar to a human hand. To further improve the reliability andruggedness of the hand, all of the fingers are mounted on shock loaders. Thisallows them to take very high impacts without incurring damage.

 Thethree degree of freedom dexterous fingers (figure 4) include the finger mount,a yoke, two proximal finger segment half shells, a decoupling link assembly, amid finger segment, a distal finger segment, two connecting links, and springsto eliminate backlash (not shown in figure). Figure 5 Finger base cam The basejoint of the finger has two degrees of freedom: yaw ( /- 25 degrees) and pitch(I00 degrees). These motions are provided by two leadscrew assemblies that workin a differential manner. The short cables that extend from the leadscrewassemblies attach into the cammed grooves in the proximal finger segments halfshells (figure 5). The use of cables eliminates a significant number of jointsthat would otherwise be needed to handle the two degree of freedom base joint.The cammed grooves control the bend radius of the connecting cables from theleadscrew assemblies (keeping it larger to avoid stressing the cables andallowing oversized cables to be used). The grooves also allow a nearly constantlever arm to be maintained throughout the full range of finger motion. Becausethe connecting cables are kept short (approximately I inch) and their bendradius is controlled (allowing the cables to be relatively large in diameter(.07 inches)), the cables act like stiff rods in the working direction (closingtoward the palm) and like springs in the opposite direction. In other words,the ratio of the cable length to its

当手指关节卸载时,电机驱动系统的岗位调节非常的粗略。

抓握手指有多个俯仰关节,每一种难点都有90度的里程。手指由贰个导螺杆组件致动,并且在操作指状物的近端手指段半壳中选用同一的凸轮槽(图5)。 7-bar指形连杆与灵巧指形的指形连杆相似,区别之处在于去耦连杆被拆毁并且连杆与手指支架连接(图7)。在这种布局中,手指的每一种难点都是差不离约等于的角度关闭。当前正在评估的手指的替代配置用刚性有限行程弹簧替代远侧连杆,以允许手指在掀起物体时越来越好地契合。

Robonaut手(图1)总共有10个自由度。

为了同盟宇宙航银行职员戴先导套的手的轻重,电机安装在手外,机械重力通过柔性传动系传递。过去的手工业设计[2,3]利用了选择复杂滑轮系统或护套的腱索驱动装置,那三种装置在EVA空间情况中运用时都会导致严重的破坏和可信赖性难题。为了幸免与肌腱有关的难点,手使用柔性轴将电力从前臂的电机传输到手指。柔性轴的旋转运动机原因此微型模块化导丝转换到手中的线性运动。结果是紧密而深厚的传动系。

Palm

图5:手部解剖总的来说,手部配备了45个传感器(不富含触觉感测)。每种接头都配有嵌入式绝对地方传感器,每一种电机都配有增量式编码器。每一种导螺杆组件以及手段球关节连杆均被武装为称重传感器以提供力反馈。除了提供规范阻抗调节之外,一旦达标梦想的抓力,手力调整算法利用非反向驱动手指驱动系统来节约电机能源消耗渴求。预先规划的轨道方式的手原语可用以在实践重复义务时最大限度地减少操作员的专门的职业量。

Using these custom mappings, operators are

5

3设计

当手指装入时,五个机械效应会潜移暗化驱动系统的重力。

Grasping Fingers

 3.4 Thumb

 多个自由度的灵敏手指(图4)包含

图9手段机构

终极部分必要先分词,再用机译

Before any operation can occur, basicposition control of the Robonaut hand joints must be developed. Depending onthe joint, finger joints are controlled either by a single motor or anantagonistic pair of motors. Each of these motors is attached to the fingerdrive train assembly shown in figure 3. A simple PD controller is used toperform motor position control tests. When the finger joint is unloaded,position control of the motor drive system is simple. When the finger isloaded, two mechanical effects influence the drive system dynamics. The flexshaft, which connects the motor to the lead screw, winds up and acts as atorsional spring. Although adding an extra system dynamic, the high ratio ofthe lead screw sufficiently masks the position error caused by the state of theflex shaft for teleoperated control. The second effect during loading is theincreased frictional force in the lead screw. The non-backdrivable nature ofthe motor drive system effectively decouples the motor from the applied force.Therefore, during joint loading, the motor sees the increasing torque requiredto turn the lead screw. The motor is capable of supplying the torque requiredto turn the lead screw during normal loading. However, thermal constraintslimit the motor's endurance at high torque. To accommodate this constraint, thecontroller incorporates force feedback from the strain gauges installed on thelead screw shell. The controller utilizes the non-back drivability of the motordrive system and properly turns down motor output torque once a desired forceis attained. During a grasp, a command to move in a direction that willincrease the force beyond the desired level is ignored. If the forced rops offor a command in a direction that will relieve the force is issued, the motor revertsto normal position control operation. This control strategy successfully lowersmotor heating to acceptable levels and reduces power consumption. To perform jointcontrol, the kinematics, which relates motor output joint output, must be determined. As statedearlier, due to varying cable interactions a closed form kinematics algorithm isnot tractable. Once the finger joint hall-effect based position sensors arecalibrated using are solver, a semi-autonomous kinematic calibration procedure forboth forward and inverse kinematics is used to build look-up tables. Variationsbetween kinematics and hall-effect sensor outputs during operation are seen inregions where the pre-loading springs are not effective. Designs using differentspring strategies are underdevelopment to resolve this problem. To enhance positioningaccuracy, a closed loop finger joint position controller employing hall-effect sensorposition feedback is used as part of this kinematic calibration procedure. ableto successfully manipulate many EVA tool.

正如所料,在手工业原型,装配和开始测验中出现了广大合併挑战。个中部分难题和前段时间的建设方案如下。手中的数不完构件都应用非常千头万绪的几何样子,以尽量收缩零件数量并降低手的尺码。那么些部件的炮制能够因此一直从立体光刻模型将它们铸造在铝中来实现。这一个历程以细小的资本产生相持高精度的部件。个中最棒的事例正是手掌,形状复杂,有50多少个洞,个中非常少有互动正交的。

与斯特林发动机耦合的是不锈钢高柔性软轴。

Dexterous Fingers

为了推行一齐决定,必需鲜明与斯特林发动机输出联合输出有关的活动性情。如前所述,由于丝缆交互成效的不等,密闭格局的运动学算法不易管理。一旦基于手指关节霍尔效应的职位传感器使用解算器举办校准,则运用用海岩向和反向运动学的自行运动高校准程序来营造查找表。运转时期霍尔传感器输出与霍尔效应传感器输出之间的浮动可知于预加载弹簧无效的区域。使用分裂弹簧计策的筹算不足以消除那些难题。为增进定位精度,采纳霍尔效应传感器地方反馈的闭环手指关节地方调控器作为此活动高校准程序的一局地。能够成功调整非常多EVA工具。

 Design The wrist (figure 9) provides anunconstrained pass through to maximize the bend radii for the finger flexshafts while approximating the wrist pitch and yaw travel of a pressurizedastronaut glove. Total travel is /- 70 degrees of pitch and /- 30 degrees ofyaw. The two axes intersect with each other and the centerline of the forearmroll axis. When connected with the Robonaut Arm [19], these three axes combineat the center of the wrist cuff yielding an efficient kinematic solution. Thecuff is mounted to the forearm through shock loaders for added safety. Figure10: Forearm The forearm is configured as a ribbed shell with six cover plates.Packaging all the required equipment in an EVA forearm size volume is achallenging task. The six cover plates are skewed at a variety of angles andkeyed mounting tabs are used to minimize forearm surface area. Mounted on twoof the cover plates are the wrist linear actuators, which fit into the forearmsymmetrically to maintain efficient kinematics. The other four cover plateprovides mounts for clusters of three finger motors (Figure 10). Symmetry isnot required here since the flex shafts easily bend to accommodate odd angles.The cover plates are also designed to act as heat sinks. Along with the motors,custom hybrid motor driver chips are mounted to the cover plates.

from 

图5手指底座凸轮

图3中所示的每一个手部组件总共具有16个自由度,何况由前臂,七个DOF腕部以及具有地方,速度和力传感器的十一个DOF手组成。前臂的最底层直径为4英寸,长约8英寸,容纳全部十四台电机,电机调整和电力电子装置,以及有伊始持线路。图4提交了该零件的解释图。花招节距和偏航的协同行程被规划为在加压手套中实现或超越人口。

3.6腕/前臂

Design of the NASA Robonaut Hand R1

手指的礁盘接头具备八个自由度:偏航( / -

Figure 9 Wrist mechanism

操纵EVA乘职员和工人具必要能力(包络)和灵活的抓握(指尖)。某个工具须要双臂或多手指动作,同有时候牢牢迷惑。 20磅的最大力量。并索要30英寸磅的扭矩来拆除与搬迁和装置EVA轨道可更动单元(ORU)[15]。

持有的手都配置了44个(不包罗触觉)传感器。每一种接头都配有嵌入式相对地点传感器,每一种电机都配有增量式编码器。每一种导螺杆组件以及手腕关节连杆均被器械为称重传感器以提供力反馈。

Figure 4: Dexterous finger

四个五指,十二自由度的手组成。

手由两片段构成(图5):一个用于操作的灵敏职业组,以及贰个抓握组件,它同意手在调节或运转给定物体时保持平稳的抓握。那是工具使用的基本特征[3]。灵巧套装由多少个3 DOF手指(食指和中指)和贰个3 DOF可对折手指组成。抓握组由三个单DOF手指(无名氏指和小指)和贰个手掌自由度组成。全数的手指都被安装在手心上。为了合营宇航员戴初阶套的手的深浅,电机安装在手外,机械重力通过柔性传动系传递。

加载进度中的第1个影响是扩大了丝杠的摩擦力。电机驱动系统的不可逆性质使电机与施加的力有效地分手。因此,在关键加载时期,电机遇看到转动丝杠所需的扩充的扭矩。电机能够在健康负载时提供转动丝杠所需的扭矩。可是,热限制会限制电机在高转矩时的耐久性。为了适应这一限量,调节器将安装在导螺杆壳体上的应变仪的力反馈结合起来。调节器选用电机驱动系统的无前驱动手艺,并在实现所需的力后科学地回降电机输出扭矩。在抓取进度中,将会顺着二个样子移动的吩咐将被忽略,该方向会将力扩展到超越所需的品位。假若强制断电或在一个方可释放力的势头产生一个命令,电机将复苏平常的职位调整操作。该调节战略成功地将电机加热降至可承受的档案的次序并收缩功耗。

手臂的规划约束:   20磅的最努力和30英寸磅的扭矩

3.4拇指

灵巧组由七个三自由度手指(食指和中指)和多个三度自由争论拇指组成。抓握组由三个,八个自由度指(无名氏指和小指)和三个手掌自由度组成。全数的手指都棉被服装置在手掌上(图2)。

 1 Introduction


         14:1行星齿轮头的无刷直流动机。

         八个近侧手指段半壳,

该装置在通过加压式太空服手套操作时可足够好地近似于宇宙航银行职员的手的运动学和所需的强度。详细解释了用于满意这几个须求的机制及其背后的宏图意见。集成经验揭破了与收获所需大小内的所需功效有关的挑衅。展现开始手指调整攻略以及可取得的抓握的例证。

大拇指是获取过多与EVA工具接口所需的抓手的基本点。手掌机构(图8)中呈现的拇指为多少个抓手提供了一个支架,并提供了一个拔??动作,巩固了工具抓握的喜笑颜开。那允许手以使工具的轴线与前臂摇晃轴线对齐的办法迷惑物体。这对数不完常用工具(如螺丝刀)的应用十三分主要。该单位满含八个枢转掌骨,三个联袂的轴和多少个扭力弹簧。抓手指和她们的导螺杆组件安装到掌骨。掌骨连接在同一根轴上的魔掌上。第多少个扭力弹簧放置在五个掌骨之间,在两个之间提供枢转力。第二个扭力弹簧放置在其次掌骨和手掌之间,迫使两掌骨靠在手心上。致动导螺杆组件安装在手心中,短丝缆连接到第一掌骨上的丝缆终端。扭力弹簧的尺码使安妥导螺杆组件拉下第一掌骨时,第二掌骨以二分一的角度折叠第一掌骨。通过这种方法,手掌能够以与人士相似的主意展开杯盏的揉搓而不会产菜鸟指碰撞。

C. S. Lovchik, H. A. Aldridge RoboticsTechnology Branch NASA Johnson Space Center Houston, Texas 77058 Iovchik@jsc.nasa.gov, haldridg@ems.jsc.nasa.gov Fax: 281-244-5534

diameter is such that the cables are stiff enough to push the finger openbut if the finger contacts or impacts anobject the cables will buckle, allowing the finger to collapse out of the way.

  1. Ali, M., Puffer, R.,Roman, H., Evaluation of a Multifingered Robot Hand for Nuclear Power PlantOperations and Maintenance Tasks. Proceedings of the 5 th World Conference onRobotics Research, Cambridge, MA, MS94-217, 1994. 7. Hartsfield, J., SmartHands: Flesh is Inspiration for Next Generation of Mechanical Appendages. SpaceNews Roundup, NASA Johnson Space Center, 27(35), page 3, Houston, TX, 1988. 8.Carter, E. Monford, G., Dexterous End Effector Flight Demonstration,Proceedings of the Seventh Annual Workshop on Space Operations Applications andResearch, Houston, TX, 95-102, 1993. 9. Nagatomo, M. et al, On the Results ofthe MFD Flight Operations, Press Release, National Space Development Agency ofJapan, August, 1997. 10. Stieber, M., Trudel, C., Hunter, D., Robotic systemsfor the International Space Station, Proceedings of the IEEE InternationalConference on Robotics and Automation, Albuquerque, New Mexico, 3068-3073,1997. 11. Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J., Sensor BasedSpace Robotics - ROTEX and its Telerobotic Features, IEEE Transactions onRobotics and Automation, 9(5), 649-663, 1993. 12. Akin, D., Cohen, R., Developmentof an Interchangeable End Effector Mechanism for the Ranger TeleroboticVehicle., Proceedings of the 28 th Aerospace Mechanism Symposium, Cleveland OH,79-89, 1994 13. Jau, B., Dexterous Tele-manipulation with Four Fingered HandSystem. Proceedings of the IEEE International Conference on Robotics andAutomation,. Nagoya, Japan, 338-343, 1995. 14. Butterfass, J., Hirzinger, G.,Knoch, S. Liu, H., DLR's Multi-sensory Articulated Hand Part I: HardandSoftware Architecture. Proceedings of the IEEE International Conference onRobotics and Automation, Leuven Belgium, 2081-2086, 1998. 15. ExtravehicularActivity (EVA) Hardware Generic Design Requirements Document, JSC 26626,NASA/Johnson Space Center, Houston, Texas, July,
    1. Shimoga, K.B., RobotGrasp Synthesis: A Survey, International Journal of Robotics Research, vol. 15,no. 3, pp. 230-266, 1996. 17. Mirza, K. and Orin, D., General Formulation forForce Distribution in Power Grasp, Proceedings of the IEEE InternationalConference on Robotics and Automation, p.880-887, 1994. 18. Li, L., Cox, B.,Diftler, M., Shelton, S. , Rogers, B., Development of a Telepresence ControlledAmbidextrous Robot for Space Applications. Proceedings of the IEEEInternational Conference on Robotics and Automation, Minneapolis, MN, 58-63,1996. 19. Li, L., Taylor, E., EWS Robonaut: Work in Progress, Proceedings ofthe International Symposium on Artificial Intelligence, Robotics and Automationin

图4:前臂装配与安排的空间站EVA乘员接口和工具交互的渴求为Robonaut手的安顿性提供了起源[1]。操纵EVA乘员组织工作具须要技能和灵活的抓握。某个工具须要单臂或多手指动作,同时牢牢吸引。拆卸和装置EVA轨道可替换单元(ORU)须要20磅的最卖力和30英寸磅的扭矩[2]。

 2 Design and Control Philosophy

Integration Challenges

         轭,

图4:灵巧的指尖

    将电机连接受丝杠的柔性轴卷起并视作扭转弹簧。即便扩大了一个附加的系统动态,但高比率的丝杠足以覆盖由遥控操作的柔性轴状态引起的岗位抽样误差。

4

         八个一连连杆和弹簧以祛除间隙(未在图中展现)。

招数设计(图9)从繁杂的多杆机构演化为更简明的二维滑块曲柄吊钩接头。最早盘曲的球形连杆将滑块连接到手心,并包蕴凸轮,以便在俯仰运动期间旋转连杆以逃避腕带。在再度规划花招袖口和手掌之后,达成了当下的直线球链接。手辅导向螺杆不可逆向驱动(应该代表没电时不可能动,有电时能够双向动),何况在包络抓握中可保障在发生电源故障时落实正向捕捉。假若不能够马上过来引力,大概供给任何罗布onaut手[19]可能EVA机组职员手动展开手。

利落手指的第二和第多个点子直接相接,以便它们以约等于的角度关闭。这么些接头由三个单身的导螺杆组件通过多少个分别联合浮动装置驱动(图6)。丝杠组件上的短丝缆连接到去耦链路中的枢轴丝缆终端。丝缆中的盘曲允许致动穿过五个自由度的基部接头,而无需复杂的机关。连杆的设计使得丝缆的弧长度大致恒定,不管基座接头的地点怎么(相比较图6中的弧A与弧B)。那使得远端关节的移位大致独立于基部关节。图2兼有近端和远端段,而且在策动上临近于灵巧指状物,但具有明显越多的偏航行程和细长的间距。拇指也以那样的角度安装在手掌上,使得运动范围的充实导致人类拇指活动的合理仿真。这种设置形式得以使手试行抓握,那与日常的将拇指直接放在手指对面包车型地铁老办法相比较是不可能的[2,3,14]。拇指基座关节具备70度偏航和110度俯仰。远端关节有80度的间距。连杆手指安装图7:抓住手指基座关节的动作与灵巧的指尖一样,但扩张了凸轮式制动器以保持丝缆的盘曲半径在壮大偏航角度时十分的大。拇指的远侧部分以近乎于决定手指的办法被驱动通过分离联合浮动装置。拇指基座的扩充偏航行程使完全远端机械解耦困难。相反,关节在软件中解耦。

在其他操作产生此前,必得支付罗布onaut手关节的着力地方调节。根据销路好的例外,手指关节能够由单个电机或相对的马达调整。各种电机都接连到图3所示的指尖传动系组件上。一个简短的PD控制器用于推行电飞机地方置调节测量试验。

英文

与布置的空间站EVA乘员接口和工具交互的渴求为罗布onaut手设计须要提供了源点[1]。

Abstract

         远侧手指段,

3.1

4整合挑衅

它由具有电机和驱动电子装置的膀子,五个自由度的一手和

图3:手指引螺杆组件

The grasping fingers have three pitchjoints each with 90 degrees of travel. The fingers are actuated by oneleadscrew assembly and use the same cam groove (figure 5) in the proximalfinger segment half shell as with the manipulating fingers. The 7-bar fingerlinkage is similar to that of the dexterous fingers except that the decouplinglink is removed and the linkage ties to the finger mount (figure 7). In thisconfiguration each joint of the finger closes down with approximately equalangles. An alternative configuration of the finger that is currently beingevaluated replaces the distal link with a stiff limited travel spring to allowthe finger to better conform while grasping an object.

The Robonaut Hand (figure 1) has a total offourteen degrees of freedom. It consists of a forearm which houses the motorsand drive electronics, a two degree of freedom wrist, and a five finger, twelvedegree of freedom hand. The forearm, which measures four inches in diameter atits base and is approximately eight inches long, houses all fourteen motors, 12separate circuit boards, and all of the wiring for the hand. Y= Figure 2: Handcomponents The hand itself is broken down into two sections (figure 2): adexterous work set which is used for manipulation, and a grasping set whichallows the hand to maintain a stable grasp while manipulating or actuating agiven object. This is an essential feature for tool use [13]. The dexterous setconsists of two three degree of freedom fingers (pointer and index) and a threedegree of freedom opposable thumb. The grasping set consists of two, one degreeof freedom fingers (ring and pinkie) and a palm degree of freedom. All of thefingers are shock mounted into the palm (figure 2). In order to match the sizeof an astronaut's gloved hand, the motors are mounted outside the hand, andmechanical power is transmitted through a flexible drive train. Past handdesigns [2,3] have used tendon drives which utilize complex pulley systems orsheathes, both of which pose serious wear and reliability problems when used inthe EVA space environment. To avoid the problems associated with tendons, thehand uses flex shafts to transmit power from the motors in the forearm to the fingers. The rotary motionof the flex shafts is converted to linear motion in the hand using smallmodular leadscre was semblies. The result is acompact yet rugged drive train.Over all the hand is equipped with forty-three sensors not including tactilesensing. Each joint is equipped with embedded absolute position sensors andeach motor is  equipped with incrementalencoders. Each of the leadscrew assemblies as well as the wristball joint linksare instrumented as load cells to provide force feedback.

         二个配置编码器和

5初叶手指调整规划和测验


3.3

from 

         手指支架,

The design of a highly anthropomorphichuman scale robot hand for space based operations is described. This fivefinger hand combined with its integrated wrist and forearm has fourteenindependent degrees of freedom. The device approximates very well thekinematics and required strength of an astronaut's hand when operating througha pressurized space suit glove. The mechanisms used to meet these requirementsare explained in detail along with the design philosophy behind them.Integration experiences reveal the challenges associated with obtaining therequired capabilities within the desired size. The initial finger controlstrategy is presented along with examples of obtainable grasps.

笔记

在柔性轴的远端是三个微型模块化螺杆组件(图3)。该零件将柔性轴的团团转运动转变为直线运动。该器件包涵:

         多少个丝杠,它具有三个柔性轴连接和切入当中的轴承座,

Figure 3: Finger leadscrew assembly Thefinger drive consists of a brushless DC motor equipped with an encoder and a 14to 1 planetary gear head. Coupled to the motors are stainless steel highflexibility flex shafts. The flex shafts are kept short in order to minimizevibration and protected by a sheath consisting of an open spring covered withTeflon. At the distal end of the flex shaft is a small modular leadscrewassembly (figure 3). This assembly converts the rotary motion of the flex shaftto linear motion. The assembly includes: a leadscrew which has a flex shaftconnection and bearing seats cut into it, a shell which is designed to act as aload cell, support bearings, a nut with rails that mate with the shell (inorder to eliminate off axis loads), and a short cable length which attaches tothe nut. The strain gages are mounted on the flats of the shell indicated infigure 3. The top of the leadscrew assemblies are clamped into the palm of thehand to allow the shell to stretch or compress under load, thereby giving adirect reading of force acting on the fingers. Earlier models _of the assemblycontained an integral reflective encoder cut into the leadscrew. This configurationworked well but was eliminated from the hand in order to minimize the wiring inthe hand.

3.2灵活的指头

 3 Design


手指驱动器包涵

陈说了用来空间操作的万丈拟人化的人类尺度机器人手的安排。那四个手指手与其重组的花招和前臂相结合,具有二十四个独立的自由度。

本文由体育教学发布,转载请注明来源:遥控直升机制作,机器人手